

Advances in Simulating the Global Spatial Heterogeneity of Air Quality and Sectoral Contributions: Insights into the Global South

Dandan Zhang¹, Randall V. Martin¹, Liam Bindle¹, Chi Li¹, Sebastian D. Eastham², Aaron van Donkelaar¹ ¹Washington University in St. Louis, ²Massachusetts Institute of Technology

Altered Sectoral Importance at High Resolution

- Enhanced importance of population collocated sectors.
- Reduced contamination from open fires on adjacent cities.

•						
; (C48: BC					
6 0	0.28 μg/m ³ , 39.0%					
6 0	0.25 μg/m ³ , 34.3%					
6 0	0.08 μg/m ³ , 11.0%					
6 0	0.08 μg/m ³ , 10.8%					
6	0.03 μg/m ³ , 4.5%					
6	0.003 μg/m ³ , 0.4%					
2 (C48: NO ₂					
	0.63 ppbv, 40.1%					
6 0	0.25 ppbv, 15.8%					
5 0	0.22 ppbv, 14.2%					
6 0	0.21 ppbv, 13.7%					
6 0	0.19 ppbv, 11.9%					
	0.07 ppbv, 4.2%					
dustry pen Fires						

Fig. Fractional sectoral contributions of energy, industry, residential combustion, transportation, and open fire emissions for black carbon (BC) and NO₂ in the Global South in January 2015.

- Methods
- resolutions of C360 (\sim 25 km) and C48 (\sim 200 km).

Acknowledgements: This work was supported by the NASA grant 80NSSC20K0281.

[1] Eastham, S. D. et al., (2018). Geosci. Model Dev., 11(7), 2941-2953. [2] Martin, R. V. et al., (2022). Geosci. Model Dev., 15, 8731–8748.

Higher spatial heterogeneity in discrete **southern cities** than more

clustered northern cities for surface PM_{25} and NO_2 .

 Resolving pollution hotspots at high resolution alters the **relative** importance of source sectors in the Global South.

C360: BC

- 0.30 μg/m³, 32.0% 0.26 μg/m³, 27.8%
- 0.17 μg/m³, 18.2%
- 0.14 μg/m³, 15.1%
- 0.06 μg/m³, 6.6%
- 0.003 μg/m³, 0.3%
- C360: NO₂
- 0.59 ppbv, 22.2%
- 0.57 ppbv, 21.7%
- 0.53 ppbv, 19.9%
- 0.51 ppbv, 19.3%
- 0.33 ppbv, 12.5%
- 0.12 ppbv, 4.4%

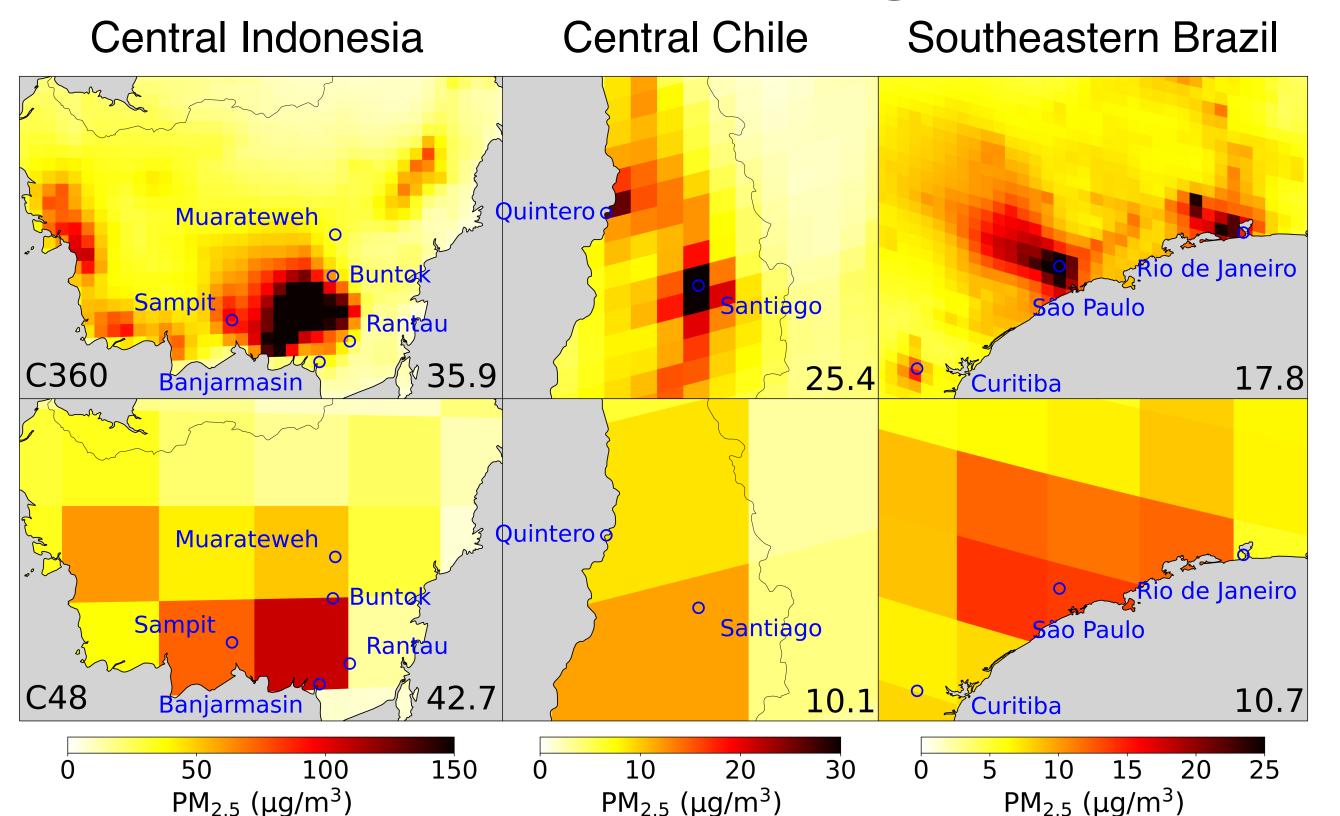
Residential Combustion Others

• Chemical Transport Model: We use the GEOS-Chem chemical transport model in its high performance implementation (GCHP)^{1,2} version 13.2.1 at cubed-sphere

• Sectoral Contributions: We followed a zero-out method with sector sensitivity tests for energy, industry, residential combustion, transportation and open fires.

Resolving Hotspots and Spatial Gradients at High Resolution

- oceans.
- than globally.


City-level Air Quality Sensitivities to Spatial Resolution

 Resolving spatial gradients in biomass burning regions.

 Resolving hotspots against cleaner high-altitudes and

 Pronounced differences across resolution globally.

 Higher resolution sensitivities for PM_{2.5} and NO₂ in the Global South

Tak

	PM_{2.5}	BC	ΡΟΑ	NO ₃ -	SO 4 ²⁻	SOA	NH_4^+	NO ₂
Global								
PW-NRMSD (%)	25.1	106	50.7	35.4	32.5	27.8	26.3	72.1
Global South								
PW-NRMSD (%)	33.3	89.4	84.6	121.0	67.4	39.5	74.4	129.4

 Clustered northern cities: Role of collocation extent between point sources and city centers.

• Sparse southern cities: Larger differences for isolated cities.

 Resolved NO₂ hotspots for both northern and southern cities.

• Shifting towards NO_x-saturated O₃ production regime with resolved hotspots.

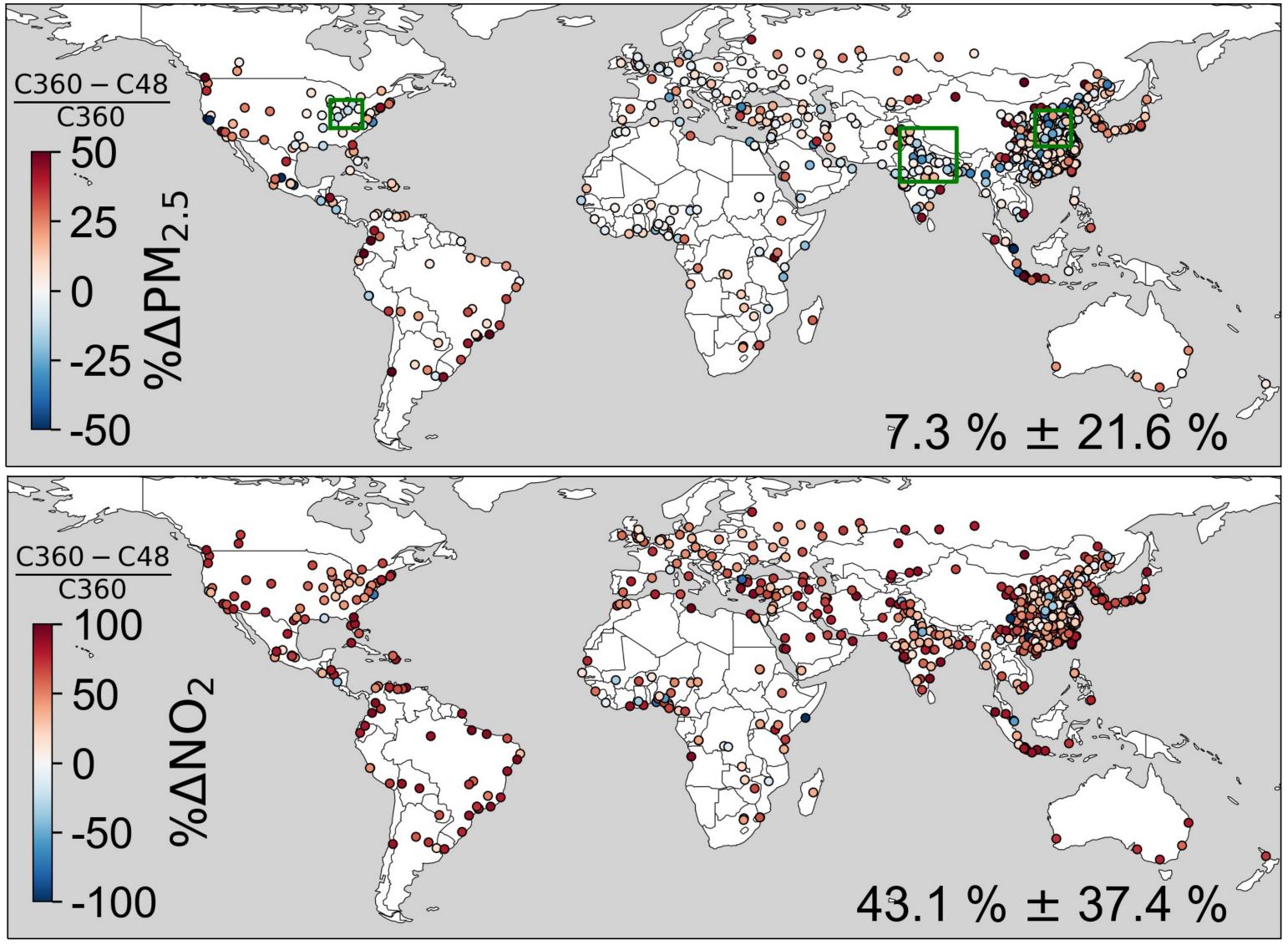


Fig. Relative differences across resolution of surface $PM_{2.5}$ and NO_2 for global populous cities.

Fig. Surface $PM_{2.5}$ simulated at C360 (25 km) and C48 (200 km).

Feel free to contact me with any further questions/comments at dandan.z@wustl.edu